Modèl Lhermite yo

Depi testwiki
Aller à la navigation Aller à la recherche

Modèl Lhermite yo pèmèt ke nou sentetize yon pakèt eleman oubyen objè ant yo. Modèl Lhermite yo pèmèt sentetize...

Modèl flèch Jonatan de fason jeneral

1 S 20 v 20 konsène lansman flèch, nou kapab li chapit 20 an pou nou ka genyen yon meyè ide . Gen 3 posibilite lè ou lanse yon flèch.

Tout swit kwasant nonm antye kapab ekri konsa :


𝕌n=i=1f(n)([1+m=1iφ(m)n+1]×[n+11+m=1iφ(m)]×i×φ(i))

e pi jeneralman :

𝕌n=i=1f(n)([α+m=1iφ(m)n+α]×[n+αα+m=1iφ(m)]×i×φ(i))


avèk f(n)𝕌n

e α>0

Nonm premye ak modèl flèch Jonatan

Pn=i=122n(1+m=1i(1(m!)2m3(m!)2m3)n+1×n+11+m=1i(1(m!)2m3(m!)2m3)×i×(1((i!)2i3(i!)2i3))
Pn=i=12n(1+m=1i(1(m!)2m3(m!)2m3)n+1×n+11+m=1i(1(m!)2m3(m!)2m3)×i×(1((i!)2i3(i!)2i3))
Pn=i=11+n!(1+m=1i(1(m!)2m3(m!)2m3)n+1×n+11+m=1i(1(m!)2m3(m!)2m3)×i×(1((i!)2i3(i!)2i3))
Pn=i=12n([1+m=1i(1[[(m!)2m3](m!)2m3])n+1]×[n+11+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[((i!)2i3](i!)2i3]))
Pn=i=122n([1+m=1i(1[[(m!)2m3](m!)2m3])n+1]×[n+11+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[((i!)2i3](i!)2i3]))

Boul wouj ak boul ble nan kad nonm premye

P((1[[(n!)2n3](n!)2n3])×(m=1n(1[[(m!)2m3](m!)2m3])i)+i)=(Pin)×[[(n!)2n3](n!)2n3]+n

Modèl flèch nan kad nonm premye annakò avèk teyorèm Wilson

n
(n1)! 1(modn)n

Nou kapab avanse

n
[[(n1)!+1n](n1)!+1n]=1n

li evidan

n
[[(n1)!+1n](n1)!+1n]=0n

Alò annakò avèk modèl Lhermite yo ak teyorèm Wilson yo, nou gen teyorèm sa yo :

n*
[[(n1)!+1n](n1)!+1n][1n]=1n
n*
[[(n1)!+1n](n1)!+1n][1n]=0n

Nou gen relasyon sa yo

n*
[[(n1)!+1n](n1)!+1n][1n]=1[[(n!)2n3](n!)2n3]


an chwazi you nan fòmil yo


Pn=i=122n([1+m=1i(1[[(m!)2m3](m!)2m3])n+1]×[n+11+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[((i!)2i3](i!)2i3]))


an ranplase

1[[(n!)2n3](n!)2n3]pa[[(n1)!+1n](n1)!+1n][1n]



an ranplase

1[[(m!)2m3](m!)2m3]pa[[(m1)!+1m](m1)!+1m][1m]

e

1[[(i!)2i3](i!)2i3]pa[[(i1)!+1i](i1)!+1i][1i]

Yon ekspresyon ekivalant se :

Pn=i=122n([1+m=1i([[(m1)!+1m](m1)!+1m][1m])n+1]×[n+11+m=1i([[(m1)!+1m](m1)!+1m][1m])]×i×([[(i1)!+1i](i1)!+1i][1i]))

Boul wouj ak boul ble nan kad nonm premye annakò avèk teyorèm Wilson

An nou fè menm bagay pou :

P((1[[(n!)2n3](n!)2n3])×(m=1n(1[[(m!)2m3](m!)2m3])i)+i)=(Pin)×[[(n!)2n3](n!)2n3]+n

Boul wouj ak boul ble nan kad nonm premye Mèsèn

Klike sou referans lan pou ka wè youn nan fòmil yo

[1]

Boul wouj ak boul ble nan kad nonm premye Mèsèn annakò avèk teyorèm Wilson

Fonksyon Ω annakò ak modèl Lhermite yo

Ω(n)=j=1n(i=1n([[nij](nij)]×(1[[(i!)2i3](i!)2i3])))

Fonksyon Liouville ak modèl Lhermite yo

λ(n)=(1)(j=1n(i=1n([[nij](nij)]×(1[[(i!)2i3](i!)2i3]))))


Gade tou

Referans

Modèl:Referans

Lyen deyò