Postila Bètran: Diferans ant vèsyon yo

Depi testwiki
Aller à la navigation Aller à la recherche
imported>Gilles2014
 
(Pa gen diferans)

Vèsyon kounye a ki date de 17 me 2021 à 23:19

Postila Bètran

Ant yon antye n ki pi gran ke 1 e doub antye sila a, toujou gen yon nonm premye. se yon teyorèm ki te konjektire pa Bertrand e ki demontre an 1850 pou lapremyè fwa pa matematisyen ris Tchebycheff Gen plizyè varyant pou demontre teyorèm oubyen postila a. Men de ladan yo ki privilejye apwòch elemantè.

Premyè demonstrasyon

Premye lèm

Premyè demach la ap mennen nou redemontre tankou yon lèm ke

22n2n<N<22n2n pou tout n ki siperyè ou egal ak 2 avèk

N=C2nn=(2nn)

N=((2n)!)(n!)×(2nn)!

N=((2n)!)(n!)×(n)!

N=((2n)!)(n!)2

Nou pale de redemontre paske se yon demonstrasyon ki te la deja ....

An nou konsidere pwodui tout antye enpè yo divize pa pwodui tout antye pè yo ki enferyè oubyen egal ak 2n

Konfòmeman ak Arnel Mercier ak Jean Marie de Koninck an desiye pwodui sa pa P

P=1××3×...×(2n3)×(2n1)2×4×...×(2n2)×2n

An nou fè parèt anlè ya pwodui ki anba a

P=1××3×...×(2n3)×(2n1)2×4×...×(2n2)×2n×2×4×6×...×(2n2)×2n2×4×6×...×(2n2)×2n


P=(1××3×...×(2n3)×(2n1))×(2×4×6×...×(2n2)×2n)2×4×...×(2n2)×2n×(2×4×6×...×(2n2)×2n)

P=(2n)!(2×4×6×...×(2n2)×2n)2

P=(2n)!(2×1×2×2×2×3×...×2×(n1)×2×n)2


P=(2n)!(2n×n!)2



P=(2n)!(2n)2×(n!)2


P=(2n)!22n×(n!)2


P×22n=(2n)!22n×(n!)2×22n


P×22n=(2n)!(n!)2


P×22n=N


An nou konsidere



i=1n(11(2i)2)


si nou devlope pwodui nap genyen

i=1n(11(2i)2)=(1122)×(1142)×(1162)×...×(11(2n2)2)×(11(2n)2)


chak faktè yo estrikteman pozitif epi yo enferyè ak 1 , kidonk pwodui li menm tou enferyè ak 1.

i=1n(11(2i)2)<1


i=1n((4i)21(2i)2)<1


i=1n((2i1)(2i+1)(2i)2)<1

sa ki bay

(1×322)×(3×542)×(5×762)×...×((2n3)×(2n1)(2n2)2)×((2n1)×(2n+1)(2n)2)<1

lè nou diseke nimeratè yo ak denominatè yo :


(12×34×56×...×2n32n2×2n12n)×(32×54×76×...×2n12n2×2n+12n)<1


1×3×5×...×(2n3)×(2n1)2×4×6×...×(2n2)×2n×3×5×...×(2n1)×(2n+1)2×4×6×...×(2n2)×2n<1


1×3×5×...×(2n3)×(2n1)2×4×6×...×(2n2)×2n×1×3×5×...×(2n3)×(2n1)2×4×6×...×(2n2)×2n×(2n+1)<1

P×P×(2n+1)<1



P2×(2n+1)<1


P2×2n<P2×(2n+1)<1

kidonk

P2×2n<1

Nou te wè ke

22nP=N


(22n)2P2=N2

(22n)2P2×2n<(22n)2

N2×2n<(22n)2


N2<(22n)22n

Fonksyon rasin kare kwasan, nou genyen :

N<(22n)22n


N<22n2n

Inegalite dwat la demontre

li pa fè answa apèl a oken nosyon nonm premye jiska prezan sinon ke faktoryèl la se nosyon de predileksyon nonm premye


Kounye an nou redemontre dezyèm pati inegalite, inegalite gòch la.

An nou konsidere pwodui sa :

i=2n(11(2i1)2)

chak faktè yo pozitif e enferyè ak 1, kidonk pwodui ya globalman enferyè ak 1.


i=2n(11(2i1)2)<1




i=2n((2i1)21(2i1)2)<1


i=2n((2i11)(2i1+1)(2i1)2)<1

i=2n((2i2)×2i(2i1)2)<1


i=2n(2i22i1)×i=2n(2i2i1)<1

sa ki bay

(23×45×...×2n42n3×2n22n1)×(43×65×...×2n22n3×2n2n1)<1


2×4×...×(2n4)×(2n2)3×5×...×(2n3)×(2n1)×4×6×...×(2n2)×2n3×5×...×(2n3)×(2n1)<1


2×4×...×(2n4)×(2n2)3×5×...×(2n3)×(2n1)×2n×2×4×6×...×(2n2)×2n3×5×...×(2n3)×(2n1)<2×2n


2×4×...×(2n2)×2n3×5×...×(2n3)×(2n1)×2×4×...×(2n2)×2n3×5×...×(2n3)×(2n1)<4n


(2×4×...×(2n2)×2n1×3×5×...×(2n3)×(2n1))2<4n


(11×3×5×...×(2n3)×(2n1)2×4×...×(2n2)×2n)2<4n

(1P)2<4n


1P2<4n

11P2>14n

p2>14n

nou genyen

22n×P=N

P=N22n



(N22n)2>14n


(N22n)>14n


(N22n)>14n


(N22n)>12n


(N22n)×22n>12n×22n

N>22n2n

22n2n<N

Inegalite goch la demontre

kidonk lè nou konbine inegalite goch la ak inegalite dwat la nou gen premye lèm


22n2n<N<22n2n

Dezyèm lèm

An nou demontre yon dezyèm pwopozisyon sa ki va sèvi kòm lèm

θ(n)<2nLn2

An soulye ke fonksyon θ Tchebychèf la defini konsa

θ(x)=pxLnp avèk x0 ...

Nan kad sa a nou sipoze ke n *

θ(1)=0<2×1×Ln2

θ(2)=Ln2<2×2×Ln2


Inegalite a verifye pou n = 1 ak n = 2 .

An nou sipoze li vrè pou yon sèten n>2


kounye a an nou konsidere N2

N2=12N=12(2nn)=(2n)!2×(n!)×n!=((2n1)!)×2n2×(n!)×n!=((2n1)!)×n(n!)×((n1)!)×n=(2n1)!((n1)!)×n!=(2n1)((n1)!)×((2n1)(n1))!=C2n1n1=(2n1n1)



pou tou n siperyè ak 1, ekspresyon sa gen yon reyalite konkrè e se yon antye : se pa egzanp kantite souzansanm de n-1 eleman diferan ke nou ka fòme a pati de yon ansanm de 2n-1 eleman.

An nou gade byen nimeratè a ak denominatè a

(2n1)!(n!)×((n1)!)=1×2×3×...×(2n2)×(2n1)(1×2×3×...×(n1)×n)×(1×2×3×...×(n2)×(n1))


Tout nonm antye non nil ki enferyè ak 2n-1 se yon divizè de nimeratè a , an patikilye tout nonm premye ki enferyè ou egal ak 2n-1 se yon divizè nimeratè a .

Menm konsiderasyon an ka fèt pou denominatè a jiska n .

An nou konsidere nonm premye p ki siperyè ak n e ki enferyè oubyen egal ak 2n-1.


n<p2n1

p((n!)×((n1)!))


p(2n1)!

kidonk yon faktè premye p ki tèl ke n<p2n1 pa senplifye.


N2 se donk miltipl non nil chak nonm premye tèl ke n<p2n1 . Se donk yon miltipl non nil pwodui tout nonm premye sila yo.

N2 siperyè oubyen egal ak pwodui nonm sa yo


N2n<p2n1p


Fonksyon Ln lan kwasant, nou genyen


LnN2Lnn<p2n1p


tout fonksyon logaritm transforme pwodui an sòm logaritm


LnN2n<p2n1Lnp


LnN21pnLnp1pnLnp+n<p2n1Lnp


LnN2(1pnLnp+n<p2n1Lnp)1pnLnp



LnN21p2n1Lnp1pnLnp


LnN2θ(2n1)θ(n)


θ(2n1)θ(n)LnN2


An nou konsidere inegalite dwat premye lèn lan oubyen dezyèm inegalite premye lèm lan

N<22n2n

nou kapab ekri li 

N<22n(2n)12


An nou pran logaritm Neperyen de manm yon.

Kòm se yon fonksyon kwasant, nap genyen

LnN<22n(2n)12


LnN<Ln22nLn(2n)12


LnN<2nLn212Ln2n


An nou konbine



{θ(2n1)θ(n)LnN2LnN<2nLn212Ln2n


θ(2n1)θ(n)+LnN<LnN2+2nLnN12Ln2n


θ(2n1)θ(n)<LnN2LnN+2nLn212Ln2n


θ(2n1)θ(n)<LnN2N+2nLog212Ln2n


θ(2n1)θ(n)<Ln12+2nLn212Ln2n

θ(2n1)θ(n)<Ln2+2nLn212Ln2n

θ(2n1)θ(n)<(2n1)Ln212Ln2n


An nou pa bliye ke nou vle demontre kòm dezyèm lèm

θ(n)<2nLn2


An nou konsidere kòm Ipotèz e an montre ke li vre pou 2n - 1 ak 2n pou tout n > 2

θ(2n1)θ(n)+θ(n)<(2n1)Ln212Ln2n+2nLn2


θ(2n1)<(4n1)Ln212Ln2n

....

kòm n>2

2n>2×2

2n>22

Ln2n>Ln22


Ln2n>2Ln2


12Ln2n>Ln2

12Ln2n<Ln2

(4n1)Ln212Ln2n<(4n1)Ln2Ln2

(4n1)Ln212Ln2n<(4n2)Ln2


(4n1)Ln212Ln2n<2(2n1)Ln2


θ(2n1)<(4n1)Ln212Ln2n<2(2n1)Ln2

θ(2n1)<2(2n1)Ln2


si nou gen n2 alò 2n4

2n2

2n

{nn22np/2n1<p2n


θ(2n)=1p2nLnp=1p2n1Lnp+2n1p2nLnp=1p2n1Lnp+0=1p2n1Lnp=θ(2n)


kidonk


n2θ(2n1)=θ(2n)


pou tout n2

si lèm lan vre pou n li vre pou 2n - 1

an nou pwouve rapidman ke inegalite vre pou 2n tou.

θ(2n1)<2(2n1)Ln2

θ(2n)<2(2n1)Ln2

θ(2n)<4nLn22Ln2

θ(2n)<4nLn22Ln2<4nLn2

θ(2n)<4nLn2

θ(2n)<2×2nLn2

si inegalite a vre pou n2 li vre alafwa pou 2n - 1 ak 2n .

An nou montre kounye a si fòmil la vrè pou entèval ]2r1,2r] alò li vrè pou entèval ]2r,2r+1]

Avan nou montre sa an nou verifye ke ingalite a vrè pou entèval ]2,4]

Inegalite a vrè pou n = 2 selon enplikasyon avan an li vrè pou 2×21etpou2×2 ki donk li vre e pou 3 e pou 4. Pwopriyete a vrè pou [2,4] oubyen ankò li vrè pou ]2,4] Pwopriyete a vrè pou ]21,22]


Ipotèz rekirans

An nou konsidere ke inegalite sou tout entèval ]2r1,2r] la e an nou montre ke li vrè pou tout entèval

]2r,2r+1] la tou .

An nou pran yon antye m kèlkon sou entèval

]2r,2r+1]

sa vle di m]2r,2r+1]

m]2r,2r+1]2r<m2r+1


Nan de bagay ki ekskli yo youn lòt, nou gen youn fòseman.

m se yon nonm pè ou m se yon nonm enpè

1)

m pè n/m=2n


{m=2n2r<m2r+12r<2n2r+12×2r1<2n2×2r2r1<n2rn]2r1,2r]

ò pa ipotèz rekirans, inegalite a vrè pou tout n ki nan entèval presedan an. Inegalite a vrè pou θ(n) Kidonk selon premyè dediksyon an li vrè pou θ(2n). Li vre donk pou tout m pè ki nan entèval ]2r,2r+1]

2)

m enpè n/m=2n1

{m=2n12r<m2r+12r<2n12r+12r+1<2n2r+1+1{2r<2n<2r+1+12n2r+1+12r<2n2r+12r2<n2r+122r1<n2rn]2r1,2r]


selon ipotèz rekirans

θ(n)<2nLn2

inegalite a vrè pou tout n ki nan entèval presedan an. Inegalite a vrè pou θ(n) 

Kidonk selon premyè dediksyon an li vrè pou θ(2n1). Li vrè donk pou tout m enpè ki nan entèval ]2r,2r+1]



An fendkont pwopriyete a vrè pou tout n2


n2,θ(n)<2nLn2

Teyorèm Legendre

Si nou gen yon nonm premye fiks, pi gwo ekspozan k tèl ke pkn! alò

k=i=1[npi]

pkn!

An nou demontre sa pa rekirans

fòmil la vrè pou n=1

i=1[1pi]=0

pi>1

1pi<1

an sipoze fòmil la bon pou n epi an nou montre li bon pou n+1


swa pαn+1


i=1[n+1pi]=i=1α[n+1pi]+i=α+1[n+1pi]


i=1[n+1pi]=i=1α([npi]+1)+i=α+1[npi]


i=1[n+1pi]=i=1α[npi]+i=1α1+i=α+1[npi]


i=1[n+1pi]=i=1α[npi]+α+i=α+1[npi]


i=1[n+1pi]=i=1α[npi]+i=α+1[npi]+α


i=1[n+1pi]=i=1[npi]+α


i=1[n+1pi]=α+k


selon ipotèz rekirans lan

ò (n+1)!=(n+1)×n!

pkn!

ak

pαn+1

enplike

pα×pk(n+1)×n!

Sa ki enplike

pα+k(n+1)!


kidonk si fòmil la vrè pou n li vrè pou n+1 kidonk li vrè pou tout antye n ki pa egal ak zero.

Premyè demonstrasyon an answa

An nou montre an premye lye ke θ(2n)θ(n)>0

pou chak n>26 sa ki va pwouve ekzistans de yon nonm premye pou pi piti nan entèval ]n,2n[ pou chak n>26

An nou konsidere yon lòt fwa nonm

N=(2nn)

N=(2nn)=(2n)!n!×(2nn)!=(2n)!(n!)2

Oken nonm premye ki siperyè ak 2n pa yon divizè de N .

Tandiske tout nonm premye ki konpri ant n ekstrikteman ak 2n lajman divize N yon sèl fwa.

An nou konsidere n ak 2n pou nou wè kisa ki rive.

N=(2n)!(n!)×(n!)

si n premye, li parèt de fwa anlè a sou fòm n ak 2×n

menm jan an li parèt 2 fwa anba a sèlman. Kidonk, n pa yon faktè de N.

Pou 2n , si n>1 2n pa yon nonm premye.

Nan entèval ]n,2n[ oubyen ankò ]2,2n] tout nonm premye se divizè N yon sèl fwa, paske nonm premye sa a prezante yon sèl fwa nan nimeratè a e li pa prezante nan denominatè a,

De tout fason nou ap gen pou nou retounen sou konsiderasyon sa a.

Si nou konsidere teyorèm Legendre lan nou kapab ekri :

N=2n!n!×(n!)=p2n(pi=1[2npi])pn(p2×i=1[npi])

An nou konsidere n<p2np2×i=1([npi])

Pwodui sa vo 1 paske ekspozan toujou vo 0.

pou tout antye n > 1 , 2n pa premye kidon

n>1,n<p2nn<p<2n12n<1p<1nn2n<np<nn12<np<1[np]=0

pou tout i1

npi<np kidonk [npi]=0 pou tout i1

n<p2np2×i=1([npi])=n<p2np2×0=1


Nou ka ekri

N=2n!n!×(n!)=p2n(pi=1[2npi])pn(p2×i=1[npi])


N=2n!n!×(n!)=p2n(pi=1[2npi])pn(p2×i=1[npi])×n<p2n(p2×i=1[npi])


N=2n!n!×(n!)=p2n(pi=1[2npi])p2n(p2×i=1[npi])


N=2n!n!×(n!)=p2n(p(i=1[2npi]2i=1[npi]))


N=p2n(p(i=1([2npi]2[npi])))

An nou pran logarithm Neperyen de manm egalite ya.


LnN=Ln(p2n(p(i=1([2npi]2[npi]))))

LnN=p2n(Ln((p(i=1([2npi]2[npi])))))


LnN=p2n((i=1([2npi]2[npi]))×Lnp)

An nou diseke sòm sa an 4 tèrm .


LnN=n<p2n((i=1([2npi]2[npi]))×Lnp)+2n3<pn((i=1([2npi]2[npi]))×Lnp)+2n<p2n3((i=1([2npi]2[npi]))×Lnp)+p2n((i=1([2npi]2[npi]))×Lnp)

pou premye tèm lan nou genyen :

n<p2n((i=1([2npi]2[npi]))×Lnp)=n<p2n(Lnp)

....

kidonk

n<p2n((i=1([2npi]2[npi]))×Lnp)=1p2n(Lnp)1pn(Lnp)=θ(2n)θ(n)


n<p2n12n1p<1nn2nnp<nn12np<1[np]=0



i>0,npi

[npi]=0


sou yon lòt ang

n<p2n12n1p<1n2n2n2np<2nn12np<2[2np]=1


p,p2

p21p12

nou genyen sou baz ipotèz la

1p2np2<2p1

2np2<1

pou tout i>2,[2npi]=0





An nou konsidere dezyèm sòm lan


2n3<pn((i=1([2npi]2[npi]))×Lnp)


2n3<pn1n1p<32nnnnp<3n2n1np<32[np]=1


2n3<pn1n1p<32n2nn2np<322np<3[2np]=2

[2np]2[np]=22×1=0

sou yon lòt ang ,

1pnp2<32p<32×2


[np2]=0


2p2np2<3×22×p


2p2np2<3p


si p = 2

12n22<32

nap genyen lè sa a :

[2np2]=1


1n2<32

kidonk tou nou tap genyen

n<3


si n3

An nou gade ki sa nou ap genyen

2n3×2

2n6 2n32

22n3<pn

kidonk p>2

p>3 2np2<3p


1p<13

3p<1

2np2<3p<1

2np2<1

[2np2]=0

pou n3 e i2


[2npi]=0

[npi]=0


[2npi]2[npi]=0


kidonk pou tout n3


2n3<pn((i=1([2npi]2[npi]))×Lnp)=0


An nou konsidere twazyèm sòm lan


2n<p2n3((i=1([2npi]2[npi]))×Lnp)

An konsidere nan ki kondisyon inegalite ki anba somasyon ak gen sans :

2n2n3

2n4n29

18n4n2

18n4n20

2n(92n)0

92n0

92n

92n

n92

n5




An nou endike dabò ke [2×npr]2[npr] toujou egal oubyen ak zero oubyen ak 1 .


anfèt pou tout reyèl x nou genyen

[2x]2[x] egal oubyen a 0 oubyen ak 1 .

x=[x]+{x}

2x=2[x]+2{x}

[2x]=[2[x]+2{x}]

[2x]=2[x]+[2{x}]

[2x]2[x]=[2{x}]


0{x}<1

02{x}<2

[2x]2[x]=[2{x}] egal swa zero soit 1 .


[2npi]2[npi] vo 0 oubyen 1 si i=1

An nou montre ke li vo 0 nan tout lòt ka .

2n<p2n32n<p24n2994n21p2<12n9n4n2np2<n2n9n4n2np2<12[np2]=0

2n<p2n32n<p24n2994n21p2<12n9n4n2np2<n2n9n2n22np2<12np2+j<1,j

i2,2npi<1

i2,[2npi]=0


n5

2n<p2n3((i=1([2npi]2[npi]))×Lnp)=2n<p2n3(([2np]2[np])×LnP)+2n<p2n3((i=2([2npi]2[npi]))×Lnp)=2n<p2n3(([2np]2[np])×LnP)+0=2n<p2n3(([2np]2[np])×LnP)

ò

[2np]2[np] oubyen egal ak 1 oubyen egal ak 0

Kidonk [2np]2[np]1


(([2np]2[np])×LnP)Lnp

2n<p2n3(([2np]2[np])×LnP)2n<p2n3Lnp

2n<p2n3Lnp=θ(2n3)θ(2n)

2n<p2n3(([2np]2[np])×LnP)θ(2n3)θ(2n)


2n<p2n3((i=1([2npi]2[npi]))×Lnp)θ(2n3)θ(2n)


θ(2n)=Ln2+Ln3+...+Lnp(π(2n))π(2n)×Ln2

θ(2n)π(2n)×Ln2


θ(2n3)θ(2n)θ(2n3)π(2n)×Ln2

Pou tout n5

2n<p2n3((i=1([2npi]2[npi]))×Lnp)θ(2n3)π(2n)×Ln2



An nou konsidere katryèm sòm lan





p2n((i=1([2npi]2[npi]))×Lnp)


An nou raple ke [2npi]2[npi] swa egal ak 0 swa egal ak 1 .

yon lòt kote [2npi]2[npi]


An nou gade apati de kilè [2npi] toujou vo zero pou yon p fikse


[2npi]=02npi<12n<pipi>2nLnpi>Ln2niLnp>Ln2ni>Ln2nLnpi>[Ln2nLnp]i[Ln2nLnp]+1 , etandone ke i se yon antye natirèl ki pa egal ak 0 .


i[Ln2nLnp]+1[2npi]2[npi]=0


sou ipotèz n5

p2n((i=1([2npi]2[npi]))×Lnp)=p2n((i=1[Ln2nLnp]([2npi]2[npi]))×Lnp)+p2n(([Ln2nLnp]+1([2npi]2[npi]))×Lnp)


p2n((i=1([2npi]2[npi]))×Lnp)=p2n((i=1[Ln2nLnp]([2npi]2[npi]))×Lnp)+0


p2n((i=1([2npi]2[npi]))×Lnp)=p2n((i=1[Ln2nLnp]([2npi]2[npi]))×Lnp)p2n((i=1[Ln2nLnp]1)×Lnp)

p2n((i=1([2npi]2[npi]))×Lnp)p2n([Ln2nLnp]×LnP)


p2n((i=1([2npi]2[npi]))×Lnp)p2n([Ln2nLnp]×Lnp)p2n(Ln2nLnp×Lnp)

p2n((i=1([2npi]2[npi]))×Lnp)p2n([Ln2nLnp]×Lnp)p2nLn2n

p2n((i=1([2npi]2[npi]))×Lnp)p2n([Ln2nLnp]×Lnp)Ln2np2n1

p2n((i=1([2npi]2[npi]))×Lnp)π(2n)Ln2n


An nou raple ke LnN=n<p2n((i=1([2npi]2[npi]))×Lnp)+2n3<pn((i=1([2npi]2[npi]))×Lnp)+2n<p2n3((i=1([2npi]2[npi]))×Lnp)+p2n((i=1([2npi]2[npi]))×Lnp)


lè nou anvizaje tout estimasyon yo oswa tout estime yo nou kapab ekri :

pou tout n5

LnN(θ(2n)θ(n))+0+(θ(2n3)π(2n)×Ln2)+(π(2n)×Ln2n)


θ(2n)θ(n)LnNθ(2n3)+π(2n)(Ln2Ln2n)


θ(2n)θ(n)LnNθ(2n3)π(2n)(Ln(2n2))


θ(2n)θ(n)LnNθ(2n3)π(2n)Ln2


Li rete pou nou pwouve ke LnNθ(2n3)π(2n)Ln estriteman pozitif .

Nou te genyen N>2n2n

LnN>Ln(2n2n)

LnN>Ln22nln2n

LnN>2nln2ln(2n)

LnN>2nLn2Ln2Lnn

LnN>2nLn2Ln2Lnn12


LnN>2nLn2Ln212Lnn

Anplis lè n2 , nou genyen

θ(2n3)=θ([2n3])<2×[2n3]Ln2<4n3Ln2


θ(2n3)>4n3Ln2

yon lòt kote, π(n)n2,n8 , etandone ke tout nonm pè pi gran ke 2 pa premye ou di mwens pa konpoze.

Nou vin genyen :


θ(2n)θ(n)>2nLn2Ln(2n)4n3Ln22n2Lnn


θ(2n)θ(n)>2nLn2Ln2Lnn4n3Ln22n2Lnn


θ(2n)θ(n)>2nLn2Ln212Lnn4n3Ln22n2Lnn





θ(2n)θ(n)>(2n4n31)Ln2(12+2n2)Lnn


θ(2n)θ(n)>(2n31)Ln2(1+2n2)Lnn

Li rete pou nou pwouve ke manm dwat la pi gran ke zero e konsa ant n ak 2n nap va asire ke gen o mwen yon nonm premye .

(2n31)Ln2(1+2n2)Lnn>02n32LnnLn232Ln2Ln4n4n>0



An nou pwouve ekivalans lan


2n32LnnLn232Ln2Ln4n4n>024nLn2×2n34nLnn62Ln4n24nLn2>04nLn2×2n34nLnn62Ln4n>0


4nLn2×2n34nLnn62Ln4n>028n2Ln26nLnn62Ln4n4n2Ln26nLnn62Ln4n>04n2Ln26nLnn62(Ln4+Lnn)4n2Ln26nLnn62(Ln2+12Ln2)>0


4n2Ln26nLnn62(Ln2+12Ln2)>04n62Ln2nLnn2Ln222Lnn>02n32Ln2nLnn2Ln222Lnn>02×(2n3Ln222nLnnLn2Lnn)>0

2×(2n3Ln222nLnnLn2Lnn)>0(2n31)Ln222nLnnLnn>0(2n31)Ln222nLnn12Lnn>0(2n31)Ln2(1+2n2)Lnn>0

An nou deziye pa f(n)

2n32LnnLn232Ln2Ln4n4n

An nou montre ke li pozitif pou tout n26


An etann fonksyon an sou tout

f(x)=2x32LnxLn232Ln2Ln4x4x


an nou pwouve ke f(26)>0


f(26)=23×232×6Ln2Ln232Ln2×Ln4×264×26=82932Ln2×4Ln224=82912224=829324=32236324=292364


f(26)=292364=(29236)×(292+36)4×1292+36=(29×29×236×36)4×1292+36=3864×1292+36>0

an nou pwouve tou ke f(x)>0 pou tout n26


kidonk fonksyon f la estriteman kwasant


(2x)=((2x)12)=12(2x)12×2=(2x)12=12x=2x2x×2x=2x2x

(32LnxLn2)=32Ln2×1x=32xLn2


(4x)=((4x)12)=12×(4x)12×4=2×(4x)12=24x=24x4x=4x2x=xx


(Ln4x)=14x×4x2x=12x

oubyen

(Ln4x)=(Ln(4x)12)=(12Ln4x)=12×14x×4=48x=12x

(Ln4x4x)=12x×4x4x2x×Ln4x(4x)2=4x4x×Ln4x2x4x=4x(1Ln4x)8x2



(32Ln2×Ln4x4x)=4x4x×Ln4x2x4x=32Ln2×4x(1Ln4x)8x2


f(x)=2x2x32xln232Ln2×4x×(1Ln4x)8x2

f(x)=4x×Ln2×2x12x38x(1Ln4x)8x2Ln2


f(x)=4x×Ln2×2x12x38x+38xln4x8x2Ln2

f(x)>04x×Ln2×2x12x38x+38xLn4x8x2Ln2>04x×Ln2×2x+38x×Ln4x>12x+38x


si nou miltiplye pa 2x0


f(x)>04x×Ln2×2x12x38x+38xLn4x8x2Ln2>04x×Ln2×2x+38x×Ln4x>12x+38x4xLn2×2x+3×4x×Ln4x>12x×2x+3×4x8xLn2+12Ln4x>122x+12


sou ipotèz x>26 an nou pwouve ke 8xLn2+12Ln4x>122x+12


x>26x>1816x>28816x×Ln4×Ln4>288×Lne×Lne2×2×Ln2×Ln2×16x64x×(ln2)2>28864x2×(ln2)2>288x64x2×(ln2)2>144×2x8xln2>122x

yon lòt kote nou genyen

12Ln4x>12Ln4x>1sqrt4x>e4x>e2x>e24

non genyen tou :

e<3

0<e<3e2<9e24<94

26>94>e24

x>26x>e244x>e24x>eLn4x>112Ln4x>12


donk


x>268xLn2+12Ln4x>122x+12

Lis nonm premye superyè ou egal ak 3 epi ki enferyè ak 64

3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61

Dezyèm demonstrasyon

Majorasyon apati postila Bètran

Pn2n

P1=2=21 22=4

P2=3<22

P3=5

32 P3<32



an sipoze majorasyon an vrè pou n>3 e an montre ke li vrè pou n+1

Pn2nπ(Pn)π(2n)nπ(2n)n

kidonk nan entèval \left[1, 2^n\right] gen o mwen n nonm premye selon ipotèz rekirans lan .


selon ipotèz Bètran an egziste pou pi piti yon nonm premye nan entèval ]2n,2n+1[


nou kapab di tou ke nan entèval ]2n,2n+1] gen pou piti yon nonm premye

π(2n+1)π(2n)1

π(2n+1)1+π(2n)


π(2n+1)1+n


gen pou pi piti n+1 nonm premye nan entèval


[1,2n+1]

Pn+1<2n+1

Anfendkont si majorasyon an vrè pou n, li vrè pou n + 1 .


n,Pn2n

.....


Pk(n)n×2k


sa nou rele Pk(n) se k yèm nonm premye ki siperyè oubyen egal ak n .


Avèk , sipoze fikse an nou montre ke majorasyon an vre pou k+1 .

Pk(n)n×2k

Anvan nou fè sipozisyon an , an nou verifye ke majorasyon vre pou k = 1


P1(n)2n paske nan entèval ]n,2n[  li egziste pou pi piti yon nonm premye selon postila Bètran  .

Anfèt si n premye, P1(n)=n

si n pa premye P1(n)]n,2n]


kidonk P1(n)[n,2n]

P1(n)2n

Postila Bètran avèk de twa fòmil matematisyen Ayisyen Lainé Jean Lhermite Junior konsènan nonm premye

Ekspresyon nonm premye ran n selon modèl flèch Jonatan anakò avèk postila Bètran an

Pn=m=12n([1+m=1i([(m!)2m3][(m!)2m3])n+1]×[n+11+m=1i([(m!)2m3][(m!)2m3])]×i×([(i!)2i3][(i!)2i3]))

K yèm nonm premye ki siperyè oubyen egal ak n

Premye apwòch

PK(n)=(i=12k×n([1+m=1i(1[[(m!)2m3](m!)2m3])k+1+m=1n(1[[(m!)2m3](m!)2m3])]×[k+1+m=1n(1[[(m!)2m3](m!)2m3])1+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[(i!)2i3](i!)2i3])))×[[(n!)2n3](n!)2n3]+(i=12k×n([1+m=1i(1[[(m!)2m3](m!)2m3])k+m=1n(1[[(m!)2m3](m!)2m3])]×[k+m=1n(1[[(m!)2m3](m!)2m3])1+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[(i!)2i3](i!)2i3])))×(1[[(n!)2n3](n!)2n3])

Demonstrasyon

nan de evenman kontrè nou gen fòseman youn. Nou kapab di ke oubyen :

i=PK(n) oubyen iPK(n)

De presizyon dabò

nou gen asirans ke PK(n) egziste e nou gen asirans tou ke egziste yon i nan entèval ... kote i=PK(n) akoz majorasyon an .

Dezyèm apwòch

PK(n)=(i=12k×n([1+m=1i(1[[(m!)2m3](m!)2m3])k+1+m=1n1(1[[(m!)2m3](m!)2m3])]×[k+1+m=1n1(1[[(m!)2m3](m!)2m3])1+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[(i!)2i3](i!)2i3])))

Twazyèm apwòch

Pk(n)=i=n2k×n([1+m=1i(1[[(m!)2m3](m!)2m3])k+1]×[k+11+m=1i(1[[(m!)2m3](m!)2m3])]×i×(1[[(i!)2i3](i!)2i3]))

Gade tou

Referans

Modèl:Referans

Lyen deyò